ANNEXURE –A

	DAV PUBLIC SCHOOLS, ODISHA ZONE HALF YEARLY EXAM 2023-24,SUBJECT: BIOLOGY(044), CLASS : XII,SET -02								
	BLUE PRINT OF QUESTION PAPER								
SI. No.	Units	Marks Allotted in Syllabus	MCQ (12 Nos.)	A&R (4 Nos.)	SA (5 Nos.)	LA-I (7 Nos.)	CASE BASED (2 Nos.)	LA-II (3 Nos.)	TOT AL (33 NOS.)
1	REPRODUCTION	18	Q4(1) Q5(1) Q6(1) Q7(1)	Q14(1)	Q18(2)	Q23(3) Q24(3)		Q32(5) OR	9(18)
2	GENETICS AND EVOLUTION	24	Q8(1) Q9(1) Q10(1) Q11(1)	Q15(1)	Q19(2) (OR) Q20(2)	Q25(3) Q26(3)	Q30(4)	Q33(5) OR	11(24)
3	BIOLOGY & HUMAN WELFARE	14	Q12(1)	Q16(1)	Q21(2)	Q22(3) (OR) Q27(3)	Q29(4)		6(14)
4	BIOTECHNOLOGY & ITS APPLICATIONS	14	Q1(1) Q2(1) Q3(1)	Q13(1)	Q17(2)	Q28(3)		Q31(5) OR	7(14)
	MARKS	70	12	04	10	21	08	15	33(70)

SL.NO F T SL.NO F C S S C S S C S S C S S S S S S S S S S S S S	Units REPRODUC LION	QUESTION WISE ANAL Forms of Question - (MCQ ,A & R TYPE, SA, LA-I, LA-II) MCQ:- 4,5,6,7 A & R:-14 SA:-18 LA-I:-23,24 Case Based:-Nil LA-II:-32	YSIS Marks Allotted	Question no for (R)& (U), (Ap), (An) (E)&(C), (K)& (U):- 4,7,18,23,24,32 (Ap):-5 (An) (E)&(C):-6,14 (K)& (U):-
SL.NO I T G N E 2	Units REPRODUC LION	Forms of Question - (MCQ ,A & R TYPE, SA, LA-I, LA-II) MCQ:- 4,5,6,7 A & R:-14 SA:-18 LA-I:-23,24 Case Based:-Nil LA-II:-32	Marks Allotted	Question no for (R)& (U), (Ap), (An) (E)&(C), (K)& (U):- 4,7,18,23,24,32 (Ap):-5 (An) (E)&(C):-6,14 (K)& (U):-
1 T 1 T 6 N E 2	REPRODUC <u>FION</u>	MCQ:- 4,5,6,7 A & R:-14 SA:-18 LA-I:-23,24 Case Based:-Nil LA-II:-32	18	(K)& (U):- 4,7,18,23,24,32 (Ap):-5 (An) (E)&(C):-6,14 (K)& (U):-
1 T 1 T 6 N E 2	REPRODUC FION	MCQ:- 4,5,6,7 A & R:-14 SA:-18 LA-I:-23,24 Case Based:-Nil LA-II:-32	18	(Ap):-5 (An) (E)&(C):-6,14 (K)& (U):-
F 1 T G N E 2	REPRODUC FION	MCQ:- 4,5,6,7 A & R:-14 SA:-18 LA-I:-23,24 Case Based:-Nil LA-II:-32	18	(Ap):-5 (An) (E)&(C):-6,14 (K)& (U):-
1 T 1 T 6 N E 2	REPRODUC FION	LA-II:-23,24 Case Based:-Nil LA-II:-32	18	(An) (E)&(C):-6,14 (K)& (U):-
1 T T G N E 2	REPRODUC FION	Case Based:-Nil LA-II:-32	18	(K)& (U):-
1 T G N E 2	<u>FION</u>	LA-II:-32	18	(K)& (U):-
G N E 2				(K)& (U):-
G N E 2				
G N E 2				10,11,15,19,33
2 G N E		MCQ:-8,9,10,11		
2 G N E		A & R:-15		(Ap):-9,20
2 2	GENETICSA	SA:-19,20		
2 E	ND	LA-I:-25,26		(An) (E) & (C):-
2	EVOLUTION	Case Based:-30		8,25,26,30
		LA-II:-33	24	
		MCQ:-12		(K)& (U):-16,21,27,29
		A & R:-16		
		SA:-21		(Ap):-12,22
B	BIOLOGY &	LA-I:-22,27		(\mathbf{A}_{n}) (\mathbf{E}) θ (\mathbf{C}) NII
	HUMAN WELEADE	Case Based:-29	14	(An) (E) & (C):-NIL
<u> </u>	WELFAKE	MCO: 1.2.2	14	$(\mathbf{V}) \boldsymbol{\varrho}_{\tau}$ (II), 1
		$\begin{bmatrix} WICQ1,2,3 \\ A & D \end{bmatrix} = 12$		$(\mathbf{K}) \propto (\mathbf{U})^{1} \cdot \mathbf{I},$
п	RIOTECHNO	$A \propto K - 13$ S A - 17		(An) -2 13 17 28 31
	LOCY & ITS	I A_I-28		(Ap)2,13,17,20,31
	APPLICATIO	LA-II:-31		(An) (E) & (C) - 3
4 N	NS		14	
		1		

ANNEXURE -B

Knowledge and understanding -50% (35 marks)

Applications 30% (21 marks)

Analysis , Evaluate and create 20% (14 marks)

ANNEXURE –C

	DAV PUBLIC SCHOOLS, ODISHA	ZONE		
	HALF YEARLY EXAM-2023-24, SUBJECT-BIC	DLOGY C	LASS: XII	
	MARKING SCHEME -SET-02			
QSTN NO	Value Points	Marks Allott ed	Total Marks	Page no of old NCER T /Text book
	SECTION -A			
1	b) cryIIAb & cryIAb respectively	1	1	208
2	b. EcoRI, BamHI,ampR,Ori	1	1	199
3	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1	1	211
4	c) Nucellus	1	1	25
5	a) being a diploid tissue	1	1	36
6	(d) Trophoblast Inner cell mass get attached to the endometrium differentiated as embryo	1	1	52
7	a)Point P	1	1	61
8	c) both hybrid and light DNA	1	1	105
9	b)Gynaecomastia	1	1	90
10	d) A-iv, B-iii, C-i, D-ii	1	1	112,11 7
11	a) Convergent evolution.	1	1	134
12	c) Macrophages- Mucus-secreting cells that trap microbes entering the body.	1	1	150

13	b) Both A and R are true but R is not the correct explanation of	1	1	202
	A.			
14	c. A is true but R is false	1	1	38
15	a. Both A and R are true and R is the correct explanation of A.	1	1	85
16	d A is folgo but D is true	1	1	100
10	d. A is faise but K is true	1	1	100
17	SECTION -B	¹⁄₂ x 4	2	204
	In 1983, Eli Lilly an American company prepared two DNA			
	sequences corresponding to A and B chains of human insulin.			
	introduced them in plasmids of <i>E. coli</i> to produce insulin			
	chains, Chains A and B were produced separately, extracted			
	and combined by creating disulphide bonds to form human			
	insulin.			
18	a) Ovulation I H			
10	b) Corpus luteum. Progesterone	1/2x4	2	51
	o) corpus futcani, i rogesterone	/2/1	-	51
19	a) B- Transcription, cytoplasm	¹∕₂x2	2	109
	b)3'-5'	1⁄2		
	c)Nucleotide triphosphates	1⁄2		
	OR		2	136,13
	a) Cross B, the strength of crossing over is high.	1⁄2		7
	- If distance between two genes present in one chromosome is			
	more, occurrence of crossing over is more, if distance is less	1⁄2		
	between two genes, occurrence of crossing over is less.			
	b) Cross A- genotypes of recombinant remains: $y+y w+w$	1/2		
20	Closs B- genotype of recombinant male. w+win+m	1/2	2	
20	a. Divergent evolution.	1/2	2	
	directions due to adaptations to different needs	1		
	b. Thorn of Bougainvillea and tendril of Cucurbita (any other			75
	related examples)			/5
		1/2		
21			2	1.40
21	A-Sporozoite B. Assavual reproduction	¹ ∕2 x4	2	148
	C-Haemozoin			
	D-Gut of Mosquito			

22	SECTION C			
	a) The first infection of chicken pox produces a primary response and antibodies are generated against chicken pox virus, subsequent encounter with the same virus elicit a highly intensified secondary response, due to the memory cells formed during the first encounter.	¹ ∕2x3		
	This kind of immunity is active immunity.	1⁄2	3	152
	b) Tetanus is caused by a microbe which has a deadly and fast action. Action of vaccine is slow and which may be fatal.	¹⁄₂x2		
	OR	1/2		
	 (i) The chemical nature of the coat: Viral protein coat. (ii) Enzyme B - reverse transcriptase X: viral RNA 	¹⁄₂ x3	3	155
	introduced into a cell, $C = Viral DNA$.	1⁄2		
	(iii) Host cell (D) = Macrophage.(iv) helper T-lymphocytes.	1⁄2		
23	 a)A-implants, B-Copper-T a) Implants inhibit ovulation and implantation as well as the quality of cervical mucus to prevent /retard entry of sperms Release of cu ions suppresses the sperm motility and the fertilizing capacity of sperms. b) All RTIs are spread by sexual contacts. Thus, all RTIs are STDs. Example-Syphilis But All STDs are not RTIs as they don't affect reproductive tracts. Example: HIV, Hepatitis B or C a)P-Thalamus,Q-Seed,R-Endocarp, S-Mesocarp b)False fruit, formed from thalamus other than ovary 	$\frac{1}{2}+\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}+\frac{1}{2}$ $\frac{1}{2} \times 4$ $\frac{1}{2}+\frac{1}{2}$	3	60 61 37
25	DNA Fingerprinting	1/2	3	121
	ii.Digestion of DNA into small fragments by RE iii.Separation of DNA bands by gel electrophoresis iv.Transfer to nitrocellulose membrane(Blotting) v.Hybridisation with labelled VNTR probes and Autoradiography	¹∕2x5		
26	a) Genetic drift.	1/2	3	133
	Sometimes the change in allele frequency is so different in the new sample of population that they become a different species/	1⁄2		

	The original drifted population becomes founders and the			
	effect is called founder effect.	1/2		
	b)p2+2pq +q2=1	1		
	c)More individuals acquire peripheral character value at both	1		
	ends of distribution curve			
	y surprise y and the selection	1⁄2		
27	a) The primary effluent is continuously agitated.	¹⁄₂x2		
	 To allow the growth of aerobic microbes. b) A small amount of activated sluge serves as inoculum for the aeration tank and rest of it is transferred to anaerobic sludge digester for anaerobic respiration. c) The major part of the activated sludge is pumped into large tanks called anaerobic sludge digesters where methanogens grow anaerobically digest the 	¹∕₂x2		184
	bacteria and the fungi in the sludge and produce biogas.	½x2	3	
28.	a) DNA is negatively charged hence move from cathode to anode.	1/2	3	198
	b) Agarose. obtained from sea weed	¹⁄₂x2		
	c) Stained with Ethidium bromide, expose to UV rays, Elution	1⁄2x3		
29.	SECTION -D a) Flowering branch of <i>Datura</i> species, hallucinogens b) Treatment of insomnia and mental depression. c.– <i>Erythroxylum cocca</i> , Interferes with dopamine secretion central nervous system, hallucination OR Smack, acetylation of morphine Opioids, Depressant/slows down body functions.	1/2x2 1/2x2 1/2x2 1/2x2 1/2x2 1/2x2 1/2x2 1/2x2	4	159
30.	(a) This representation is of beta globin chain of haemoglobinIn a normal person the mRNA possesses the codon GAG which codes for glutamic acid.	¹⁄₂x2		
	(b) In the sufferer, the GAG is replaced by GUG in the mRNA	¹⁄₂x2	4	
	(c) Clutamic acid is replaced by valing during translation due to	1		80
	which DDC would be gight shound. Autograms in according the	1		07
	which KDC would be sickle-snaped. Autosomal, recessive disorder	¹⁄₂x2		
	 (c) Both, As it is an autosomal disease both male and females are equally affected. Hb^AHb^s, Hb^sHb^s 	¹∕2x4		

	Action of Restriction enzyme	1/2 x 6	5	
	The enzyme cuts both DNA EcoRI cuts the DNA between bases strands at the same site G and A only when the sequence GAATTC is present in the DNA	72 X U	5	
31.	Vector DNA	Any		
		six		
	EcoR1	correc		
		t		
	Sticky end DNA fragments join at sticky ends	labelli		
		nos		196
	Recombinant DNA	ngs		170
	b)A recombinant DNA is inserted within the coding			
	sequence of an enzyme beta-galactosidase, which results			
	in insertional inactivation . The presence of a			
	chromogenic substrate gives blue coloured colonies if the		5	202
	plasmid in the bacteria does not have an insert. Presence of			
	insert results into insertional inactivation and the colonies	½ x 4		
	do not produce any colour which are identified as			
	recombinant colonies			
	Or			
	a) 27 varities			
	a) 27 variets b) The 'new' variets of Basmati has been developed by	1/2		214
	crossing the Indian Basmati variety with the semi-dwarf	72		211
	varities of the U.S.	1		
	c) Neem and turmeric	¹ ∕₂ x 2		
	d) It is called biopirarcy	1⁄2		
	$a_{1} = 1$ is called biopharcy. Biopharcy refers to the use of bioresources by			
	multinational companies and other organisations	1		
	without proper authorization from the countries and			
	neople without compensatory payment			
	e) India has framed the Indian Bill	1		
	Dependence unclimated and be cleared the second	1		
	-Recently, the partialment has cleared the second			
	amendment of the Indian Patent Bill.			

32.	 a.Only one sperm(that has entered zona pellucida) shall enter in to the ovum .Others will be degenerated. b.Prevents polyspermy c.Completes meiosis II, to form egg , second polar body. d.Sperm lysin/Enzymes present in acrosome e.Ampullary region of fallopian tube ,zygote,2n 	1/2+1/2 1/2 1/2x3 1/2 1/2x3	5	26
	OR			
	a)Bagging- The gynoecium of pistillated flower should be covered by polythene bag before maturation. When the ovary matured, the bag is removed. The desired pollen grains collected are dusted over the stigma and re-bagged to avoid contamination with unwanted pollen grains.	¹∕2x4	5	31,33
	Artificial hybridization/controlled pollination.	1⁄2		
	This is a genetic mechanism and prevents self-pollen (from the same flower or other flowers of the same plant) from fertilising the ovules by inhibiting, pollen germination or pollen tube growth in the pistil.	¹⁄2x2		
	c)In chasmogamous flower, the anther and stigma are exposed. No. Cleistogamous flower are closed flower, anther and stigma remain inside. So no cross pollination.	¹⁄₂x3		
33.	(a) Bacteriophage, because they transfer their genetic material in to bacteria during infection.(b) They used radio active phosphorous & radio active sulphur	¹ / ₂ x 2	5	102
	to prove that whether DNA or protein is the genetic material. Viruses grown in radioactive phosphorous had radioactive DNA as phosphorous is a part of DNA & Viruses grown in radioactive sulphur had radioactive protein as sulphur is a part of protein.	1/2 1		
	(c) A blender was used to separate the viral coat from bacterial cells & centrifuge was used to separate the viral particles from bacterial cells.	½ x 2	5	
	(d) DNA is the genetic material.	16		
		72		

OR			
a).Phenotype-Tall Yellow, Genotype-TtYy	¹⁄₂ x 2		79
b)Phenotypes- Tall yellow, Tall green, Dwarf yellow, Dwarf green Phenotypic ratio-9:3:3:1	¹∕₂ x 2	5	
 c) TY,Ty,tY,ty d) Law of independent assortment. When two pairs of traits are combined in a hybrid the segregation of one pair of characters is independent of the other pair of characters. Correct Punnet Square for F₂ generation 	1/2 1/2 1		