SET NO – 01

				 1			
Roll No.					Candidates must write the Set No. on		
					the title page of the answer book.		

DAV PUBLIC SCHOOLS POKHARIPUT, BHUBANESWAR-21

PSVT- 2021-22

- Check that this question paper contains 4 printed pages.
- Set number given on the right hand side of the question paper should be written on the title page of the answer book by the candidate.
- Check that this question paper contains 17 questions.
- Write down the Serial Number of the question in the left side of the margin before attempting it.

CLASS-XII

SUB: MATHEMATICS

Time: $1\frac{1}{2}$ Hours Maximum Marks: 40

General Instructions:

- 1. This question paper contains two parts A and B. Each part is compulsory. Part A carries 9 marks and part B carries 31 marks.
- 2. Part A has objective type questions and Part B has descriptive type questions.
- 3. Both Part A and B have choices.

Part-A

- 1. It consists of two sections I and II.
- **2.** Section I comprises of five short answers type questions.
- **3.** Section II comprises of one case study. Each case study comprises of 5 case based MCQs. An examinee is to attempt any 4 out of 5 MCQs.

Part-B

1. It consists of two sections III, IV and V.

- 2. Section –III comprises of 5 questions of 2 marks each.
- 3. Section –IV comprises of 3 questions of 3 marks each.
- 4. Section –V comprises of 2 questions of 5 marks each
- 5. Internal choice is provided in 2 questions of section-III, 3 questions of Section-IV,2 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

Part -A

Section-I

All questions are compulsory. In case of internal choices, attempt any one

- 1. What is the domain of the function $sin^{-1}x$
- 2. Write the value of $\sin\left[\frac{\pi}{3} \sin^{-1}\left(-\frac{1}{2}\right)\right]$.

If $\sin(\sin^{-1}\frac{1}{5} + \cos^{-1}x) = 1$, then find the value of x.

3. If $f: R \to R$ is defined by $f(x) = (3 - x^3)^{1/3}$ then find f[f(x)].

Write fog, if $f: R \to R$ and $g: R \to R$ are given by $f(x) = 8x^3$ and $g(x) = x^{\frac{1}{3}}$.

- 4. Let R be the equivalence relation in the set $A = \{0,1,2,3,4,5\}$ given by $R = \{(a,b):$ 2 divides a-b. Write the equivalence class [0].
- 5. Justify linear function is bijective.

Section-II

6. Two schools P and Q decided to award their selected students for the values of discipline and honesty in the form of prizes at the rate of Rs x and Rs y respectively. School P decided to award respectively 3,2 students a total prize money of Rs2300 and school Q decided to award respectively 5,3 students a total prize money of Rs3700.

Based on the above information answer the following questions:

The matrix equation representing the above situation is I.

A)
$$\begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2300 \\ 3700 \end{bmatrix}$$
 C) $\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2300 \\ 3700 \end{bmatrix}$
B) $\begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3700 \\ 2300 \end{bmatrix}$ D) $\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 2300 \\ 3700 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$

B)
$$\begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3700 \\ 2300 \end{bmatrix}$$
 D) $\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 2300 \\ 3700 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$

II.	The value	of the de	terminant	of Co	efficient	matrix is	

- A) 9
- B)10
- C)-1
- D)1

- A) $\begin{bmatrix} 3 & -2 \\ 5 & 3 \end{bmatrix}$ B) $\begin{bmatrix} 3 & -2 \\ 5 & -3 \end{bmatrix}$ C) $\begin{bmatrix} 3 & 2 \\ -5 & 3 \end{bmatrix}$ D) $\begin{bmatrix} 3 & -2 \\ -5 & 3 \end{bmatrix}$

- A. $\begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$ B) $\begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$ C) $\begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$ D) $\begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$

V. Using matrix method, The value of x and y is

- A) 400,500
- B) 500, 400
- C) 600,300
- D) None

Part-B

Section-III

7. If
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix}$$
 then show that $A^2 - 4A + 7I = 0$

OR

Show that all the diagonal elements of a skew-symmetric matrix are zero.

8. Prove that
$$3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$$
, $x \in \left(-\frac{1}{2}, \frac{1}{2}\right)$.

OR

Prove that $\tan\left(\frac{1}{2}\sin^{-1}\frac{3}{4}\right) = \frac{4-\sqrt{7}}{3}$.

9. Show that the function
$$f: R \to R$$
 defined by $f(x) = \frac{x}{x^2 + 1}$ is not one-one.

10. If f,g: R
$$\rightarrow$$
 R are two functions defined as $f(x) = |x| + x$ and $g(x) = |x| - x \ \forall x \in R$ then find fog

11. Solve
$$tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}tan^{-1}x$$
; $x > 0$

12.If Z is the set of all integers and R is the relation on Z defined as
$$R = \{(a,b) : a,b \in Z \text{ and } a - b \text{ is divisible by 5}\}$$
. Prove that R is both reflexive and symmetric.

Section-IV

13.Prove that
$$\cos[tan^{-1}\{sin(cot^{-1}x)\}] = \sqrt{\frac{1+x^2}{2+x^2}}$$

Prove that $\cot^{-1}7 + \cot^{-1}8 + \cot^{-1}18 = \cot^{-1}3$.

14. Show that f:N
$$\rightarrow N$$
 given by $f(x) = \begin{cases} x + 1 & x \text{ is odd} \\ x - 1 & x \text{ is even} \end{cases}$ is both one-one and onto

If $f: [0, \infty) \to [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that f is Invertible with $f^{-1}(y) = \frac{\sqrt{y+6-1}}{3}$.

15. Using properties prove that $\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc.$

For the following matrices A and B, verify that $[AB]^T = B^T A^T$;

$$A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}.$$

Section-V

All questions are compulsory. In case of internal choices attempt any one.

16. Using matrix method, solve the following system of equations

$$3x-2y+3z=8$$
 $2x+y-z=1$ $4x-3y+2z=4$

OR

If $A = \begin{bmatrix} 3 & 1 & 2 \\ 3 & 2 & -3 \\ 2 & 0 & -1 \end{bmatrix}$ then find A^{-1} . Hence solve the system of following equations

$$3x+3y+2z=1$$
 $x+2y=4$ and $2x-3y-z=5$

 $| 17. \text{If a, b, c are all non-zero and} \begin{vmatrix} 1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 + c \end{vmatrix} = 0, \text{ then }$

Prove that
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 1 = 0$$
.

OR

Using properties of the determinants, Show that

$$\begin{vmatrix} (x+y)^2 & zx & zy \\ zx & (z+y)^2 & xy \\ zy & xy & (z+x)^2 \end{vmatrix} = 2xyz(x+y+z)^2$$

SI	Name of the	1 marks	2 marks	3marks	5marks	Sub
No	Chapter					total
1	Relation and function	3	2	1		10
2	Inverse trigonometry function	2	2	1		9
3	Matrix and determinant	4	1+1	1	2	21
	Total	9	12	9	10	40